Extracellular matrix regulates expression of the TGF-beta 1 gene.

Author:

Streuli C H1,Schmidhauser C1,Kobrin M1,Bissell M J1,Derynck R1

Affiliation:

1. Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720.

Abstract

Transforming growth factor-beta (TGF-beta) is a potent regulator of cell proliferation and modulates the interactions of cells with their extracellular matrix (ECM), in part by inducing the synthesis of various ECM proteins. Three different isoforms of TGF-beta are synthesized in a defined pattern in specific cell populations in vivo. In the specific case of TGF-beta 1, this well-defined and limited expression stands in sharp contrast to its synthesis by virtually all cells in culture. Using mammary epithelial cells as a model system, we evaluated the substratum dependence of the expression of TGF-beta 1. The level of TGF-beta 1 expression is high in cells on plastic, but is strongly downregulated when cells are cultured on a reconstituted basement membrane matrix. In contrast, TGF-beta 2 mRNA levels in cells on either substratum remain unchanged. Using the chloramphenicol acetyl transferase gene as reporter gene under the control of the TGF-beta 1 promoter, we show that transcription from this promoter is suppressed when the cells are in contact with either endogenously synthesized or exogenously administered basement membrane. TGF-beta 1 promoter activity is strongly induced by the absence of basement membrane, i.e., by direct contact of the cells with plastic. This modulation of transcription from the TGF-beta 1 promoter occurs in the absence of lactogenic hormones which allow full differentiation. Our results thus indicate that basement membrane is an important regulator of TGF-beta 1 synthesis, and explain why most cells in culture on plastic express TGF-beta 1 in contrast with the more restricted TGF-beta 1 synthesis in vivo. We propose that there is a feedback loop whereby TGF-beta 1-induced synthesis of basement membrane components is repressed once a functional basement membrane is present. Finally, these results together with our current knowledge of regulation of TGF-beta 1 and TGF-beta 2 synthesis, suggest that, in vivo, TGF-beta 1 may play a major role in regulating the ECM synthesis and the cell-ECM interactions, whereas TGF-beta 2 may be more important in morphogenetic processes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases;International Journal of Environmental Research and Public Health;2023-01-30

2. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma;Cancers;2022-07-22

3. Endometriosis in Mare; What the Mare Can Teach Us When Dealing with Endometriosis in the Woman;Endometriosis - Recent Advances, New Perspectives and Treatments;2022-06-28

4. The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in Caenorhabditis elegans;Proceedings of the National Academy of Sciences;2022-04-08

5. The extracellular matrix in breast cancer;Role of Tumor Microenvironment in Breast Cancer and Targeted Therapies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3