Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments.

Author:

Funatsu T1,Kono E1,Higuchi H1,Kimura S1,Ishiwata S1,Yoshioka T1,Maruyama K1,Tsukita S1

Affiliation:

1. Department of Information Physiology, National Institute for Physiological Sciences, Aichi, Japan.

Abstract

To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform diameter (6-7 nm) projecting from the M line ran parallel, and extended into the I bands. At the junction line in the I bands, which may correspond to the N2 line in skeletal muscle, individual elastic filaments branched into two or more thinner strands, which repeatedly joined and branched to reach the Z line. Considering that cardiac muscle lacks nebulin, it is very likely that these elastic filaments were composed predominantly of connectin molecules; indeed, anti-connectin monoclonal antibody specifically stained these elastic filaments. Further, striations of approximately 4 nm, characteristic of isolated connectin molecules, were also observed in the elastic filaments. Taking recent analyses of the structure of isolated connectin molecules into consideration, we concluded that individual connectin molecules stretched between the M and Z lines and that each elastic filament consisted of laterally-associated connectin molecules. Close comparison of these images with the replica images of intact and S1-decorated sarcomeres led us to conclude that, in intact sarcomeres, the elastic filaments were laterally associated with myosin and actin filaments in the A and I bands, respectively. Interestingly, it was shown that the elastic property of connectin filaments was not restricted by their lateral association with actin filaments in intact sarcomeres. Finally, we have proposed a new structural model of the cardiac muscle sarcomere that includes connectin filaments.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3