The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry.

Author:

Rabouille C1,Strous G J1,Crapo J D1,Geuze H J1,Slot J W1

Affiliation:

1. Department for Cell Biology, Utrecht University School of Medicine, The Netherlands.

Abstract

The major pathway for cytosolic constituents to enter lysosomes is by autophagy. We used two cytosolic proteins, CuZn superoxide dismutase (SOD) and carbonic anhydrase III (CAIII), as autophagic markers in male rat hepatocytes. We took advantage of the differential presence of the two proteins in autophagic vacuoles because of the high resistance of SOD to lysosomal degradation as compared with CAIII. This allows us to determine the sequence of autophagic vacuole formation. We have double immunogold-labeled SOD and CAIII in cryosections of fasted rat liver and calculated the ratios of SOD over CAIII labeling densities (SOD/CAIII) in autophagic vacuoles (AV), as compared with the cytoplasm. Different classes of AV were defined according to their SOD/CAIII, their morphology, and their additional immunolabeling for the lysosomal markers lgp120 and cathepsin D. Of all AV, 15% exhibited a cytosol-like SOD/CAIII, indicating that degradation had not yet begun. Most of these initial AV (AVi) showed two enveloping membranes. The formation of AVi was prevented by 3-methyladenine, a potent inhibitor of autophagy. Of all AV, 85% showed a SOD/CAIII that exceeded the cytosolic ratio. These single membrane-bound vacuoles were called degradative AV (AVd). Labeling for lysosomal markers allowed the characterization of AV that shared features with both AVi and AVd. These AVi/d had a cytosol-like SOD/CAIII and a double membrane, but showed some labeling for lysosomal markers. Probably these AVi/d represent the recipient compartment for lysosomal components. AVd were positive for cathepsin D and lgp120. We discerned two AVd subclasses. Early AVd with cytosol-like SOD labeling density while CAIII labeling density was consistently lower than in the cytosol. Their size was similar to AVi and AVi/d. Late AVd contained higher SOD concentrations and were mostly larger. Our findings suggest that AV acquire lysosomal constituents by fusion with small nonautophagic structures and that after subsequent elimination of the inner membrane of AVi, degradation starts resulting in the formation of early AVd and late AVd.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3