Calcium pump of the plasma membrane is localized in caveolae.

Author:

Fujimoto T1

Affiliation:

1. Department of Anatomy, Faculty of Medicine, Kyoto University, Japan.

Abstract

The Ca2+ pump in the plasma membrane plays a key role in the fine control of the cytoplasmic free Ca2+ concentration. In the present study, its subcellular localization was examined with immunocytochemical techniques using a specific antibody generated against the erythrocyte membrane Ca2+ pump ATPase. By immunofluorescence microscopy of cultured cells, the labeling with the antibody was seen as numerous small dots, often distributed in linear arrays or along cell edges. Immunogold EM of cryosections revealed that the dots correspond to caveolae, or smooth invaginations of the plasma membrane. The same technique applied to mouse tissues in vivo showed that the Ca2+ pump is similarly localized in caveolae of endothelial cells, smooth muscle cells, cardiac muscle cells, epidermal keratinocytes and mesothelial cells. By quantitative analysis of the immunogold labeling, the Ca2+ pump in capillary endothelial cells and visceral smooth muscle cells was found to be concentrated 18-25-fold in the caveolar membrane compared with the noncaveolar portion of the plasma membrane. In renal tubular and small intestinal epithelial cells, which have been known to contain the Ca2+ pump but do not have many caveolae, most of the labeling was randomly distributed in the basolateral plasma membrane, although caveolae were also positively labeled. The results demonstrate that the caveolae in various cells has the plasmalemmal Ca2+ pump as a common constituent. In conjunction with our recent finding that an inositol 1,4,5-trisphosphate receptor-like protein exists in the caveolae (Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa. 1992. J. Cell Biol. 119:1507-1513), it is inferred that the smooth plasmalemmal invagination is an apparatus specialized for Ca2+ intake and extrusion from the cytoplasm.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 386 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3