Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C.

Author:

Dlugosz A A1,Yuspa S H1

Affiliation:

1. Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892.

Abstract

The protective function of skin depends on successful completion of a tightly regulated multi-step differentiation program, during which the induction of markers for a specific stage in epidermal differentiation is coupled to repression of markers expressed at the preceding stage. We have explored the role of protein kinase C (PKC) in this process using an in vitro model system, in which cultures of primary mouse epidermal keratinocytes are induced to terminally differentiate by raising the Ca2+ concentration in the medium from 0.05 to 0.12 mM. At doses which activate PKC, 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol block Ca(2+)-mediated induction of the spinous cell markers keratins K1 and K10 at both the protein and mRNA level. TPA and 1-oleoyl-2-acetylglycerol also rapidly repress K1 and K10 mRNA expression when added to differentiating keratinocyte cultures already expressing these markers. The inhibition of K1 mRNA expression by TPA is blocked in cells where PKC has been inactivated with bryostatin. TPA-mediated loss of K1 mRNA is also blocked in cells exposed to cycloheximide or actinomycin D implicating a PKC-induced protein factor in this process. The loss of K1 mRNA in TPA-treated cultures is the result of both a selective destabilization of K1 transcripts and a rapid inhibition of K1 gene transcription. In contrast to the dramatic repression of mRNAs typical for spinous cell differentiation, activation of PKC concurrently enhances expression of mRNAs and proteins for the granular cell markers loricrin and filaggrin. This response does not occur in cells pre-treated with bryostatin to inactivate PKC. Our results suggest that PKC is a fundamental regulator of the coordinate changes in keratinocyte gene expression that occur during the spinous to granular cell transition in epidermis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3