Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome

Author:

Jin Natsuko1ORCID,Jin Yui1,Weisman Lois S.12ORCID

Affiliation:

1. Life Sciences Institute, University of Michigan, Ann Arbor, MI

2. Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI

Abstract

Adaptation to environmental stress is critical for cell survival. Adaptation generally occurs via changes in transcription and translation. However, there is a time lag before changes in gene expression, which suggests that more rapid mechanisms likely exist. In this study, we show that in yeast, the cyclin-dependent kinase Pho85/CDK5 provides protection against hyperosmotic stress and acts before long-term adaptation provided by Hog1. This protection requires the vacuolar/endolysosomal signaling lipid PI3,5P2. We show that Pho85/CDK5 directly phosphorylates and positively regulates the PI3P-5 kinase Fab1/PIKfyve complex and provide evidence that this regulation is conserved in mammalian cells. Moreover, this regulation is particularly crucial in yeast for the stress-induced transient elevation of PI3,5P2. Our study reveals a rapid protection mechanism regulated by Pho85/CDK5 via signaling from the vacuole/lysosome, which is distinct temporally and spatially from the previously discovered long-term adaptation Hog1 pathway, which signals from the nucleus.

Funder

National Institutes of Health

University of Michigan

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3