The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology

Author:

Tarasenko Daryna1,Barbot Mariam1ORCID,Jans Daniel C.23ORCID,Kroppen Benjamin1,Sadowski Boguslawa45ORCID,Heim Gudrun6,Möbius Wiebke45ORCID,Jakobs Stefan23ORCID,Meinecke Michael178ORCID

Affiliation:

1. Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany

2. Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany

3. Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany

4. Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany

5. Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany

6. Electron Microscopy Facility, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany

7. European Neuroscience Institute Göttingen, 37077 Göttingen, Germany

8. Göttinger Zentrum für Molekulare Biowissenschaften, 37077 Göttingen, Germany

Abstract

The inner membrane (IM) of mitochondria displays an intricate, highly folded architecture and can be divided into two domains: the inner boundary membrane adjacent to the outer membrane and invaginations toward the matrix, called cristae. Both domains are connected by narrow, tubular membrane segments called cristae junctions (CJs). The formation and maintenance of CJs is of vital importance for the organization of the mitochondrial IM and for mitochondrial and cellular physiology. The multisubunit mitochondrial contact site and cristae organizing system (MICOS) was found to be a major factor in CJ formation. In this study, we show that the MICOS core component Mic60 actively bends membranes and, when inserted into prokaryotic membranes, induces the formation of cristae-like plasma membrane invaginations. The intermembrane space domain of Mic60 has a lipid-binding capacity and induces membrane curvature even in the absence of the transmembrane helix. Mic60 homologues from α-proteobacteria display the same membrane deforming activity and are able to partially overcome the deletion of Mic60 in eukaryotic cells. Our results show that membrane bending by Mic60 is an ancient mechanism, important for cristae formation, and had already evolved before α-proteobacteria developed into mitochondria.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3