Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

Author:

Divakaruni Ajit S.1ORCID,Wallace Martina2,Buren Caodu3,Martyniuk Kelly4,Andreyev Alexander Y.1,Li Edward3,Fields Jerel A.5,Cordes Thekla2,Reynolds Ian J.6,Bloodgood Brenda L.4,Raymond Lynn A.3ORCID,Metallo Christian M.2,Murphy Anne N.1ORCID

Affiliation:

1. Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093

2. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093

3. Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

4. Division of Biological Sciences, Neurobiology Section, University of California, San Diego, La Jolla, CA 92093

5. Department of Pathology, University of California, San Diego, La Jolla, CA 92093

6. Discovery Research, Teva Pharmaceutical Industries Ltd., West Chester, PA 19380

Abstract

Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity.

Funder

National Institutes of Health

National Science Foundation

Canadian Institutes of Health Research

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3