Motor axon navigation relies on Fidgetin-like 1–driven microtubule plus end dynamics

Author:

Fassier Coralie1ORCID,Fréal Amélie1,Gasmi Laïla1,Delphin Christian2ORCID,Ten Martin Daniel1,De Gois Stéphanie1,Tambalo Monica1ORCID,Bosc Christophe2ORCID,Mailly Philippe3,Revenu Céline4ORCID,Peris Leticia2ORCID,Bolte Susanne5,Schneider-Maunoury Sylvie6ORCID,Houart Corinne7,Nothias Fatiha1,Larcher Jean-Christophe6,Andrieux Annie2ORCID,Hazan Jamilé1

Affiliation:

1. Sorbonne Universités, Université Pierre et Marie Curie–Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France

2. Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France

3. Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France

4. Department of Genetics and Developmental Biology, Institut Curie, Paris, France

5. Sorbonne Universités, Université Pierre et Marie Curie–Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France

6. Sorbonne Universités, Université Pierre et Marie Curie–Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France

7. Medical Research Council Centre for Developmental Neurobiology, King’s College London, Guy’s Hospital Campus, London, England, UK

Abstract

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.

Funder

Association Française contre les Myopathies

Université Pierre et Marie Curie

Association François contre les Myopathies

Institut National de la Santé et de la Recherche Medicalé

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3