Multivalent coiled-coil interactions enable full-scale centrosome assembly and strength

Author:

Rios Manolo U.1ORCID,Bagnucka Małgorzata A.1ORCID,Ryder Bryan D.2ORCID,Ferreira Gomes Beatriz3ORCID,Familiari Nicole E.1ORCID,Yaguchi Kan1ORCID,Amato Matthew1ORCID,Stachera Weronika E.1ORCID,Joachimiak Łukasz A.2ORCID,Woodruff Jeffrey B.1ORCID

Affiliation:

1. The University of Texas Southwestern Medical Center 1 Department of Cell Biology, Department of Biophysics, , Dallas, TX, USA

2. University of Texas Southwestern Medical Center 3 Department of Biochemistry, Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, , Dallas, TX, USA

3. Max Planck Institute of Molecular Cell Biology and Genetics 2 , Dresden, Germany

Abstract

The outermost layer of centrosomes, called pericentriolar material (PCM), organizes microtubules for mitotic spindle assembly. The molecular interactions that enable PCM to assemble and resist external forces are poorly understood. Here, we use crosslinking mass spectrometry (XL-MS) to analyze PLK-1-potentiated multimerization of SPD-5, the main PCM scaffold protein in C. elegans. In the unassembled state, SPD-5 exhibits numerous intramolecular crosslinks that are eliminated after phosphorylation by PLK-1. Thus, phosphorylation induces a structural opening of SPD-5 that primes it for assembly. Multimerization of SPD-5 is driven by interactions between multiple dispersed coiled-coil domains. Structural analyses of a phosphorylated region (PReM) in SPD-5 revealed a helical hairpin that dimerizes to form a tetrameric coiled-coil. Mutations within this structure and other interacting regions cause PCM assembly defects that are partly rescued by eliminating microtubule-mediated forces, revealing that PCM assembly and strength are interdependent. We propose that PCM size and strength emerge from specific, multivalent coiled-coil interactions between SPD-5 proteins.

Funder

Cancer Prevention Research Institute of Texas

Welch Foundation

National Institute of General Medical Sciences

UT Southwestern

Chan Zuckerberg Initiative

National Institutes of Health

Max-Planck-Gesellschaft

National Research Service

Human Frontier Fellowship

Publisher

Rockefeller University Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3