Affiliation:
1. Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030
2. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
Abstract
Enzyme specificity in vivo is often controlled by subcellular localization. Yeast Doa4, a deubiquitylating enzyme (DUB), removes ubiquitin from membrane proteins destined for vacuolar degradation. Doa4 is recruited to the late endosome after ESCRT-III (endosomal sorting complex required for transport III) has assembled there. We show that an N-terminal segment of Doa4 is sufficient for endosome association. This domain bears four conserved elements (boxes A–D). Deletion of the most conserved of these, A or B, prevents Doa4 endosomal localization. These mutants cannot sustain ubiquitin-dependent proteolysis even though neither motif is essential for deubiquitylating activity. Ubiquitin-specific processing protease 5 (Ubp5), the closest paralogue of Doa4, has no functional overlap. Ubp5 concentrates at the bud neck; its N-terminal domain is critical for this. Importantly, substitution of the Ubp5 N-terminal domain with that of Doa4 relocalizes the Ubp5 enzyme to endosomes and provides Doa4 function. This is the first demonstration of a physiologically important DUB subcellular localization signal and provides a striking example of the functional diversification of DUB paralogues by the evolution of alternative spatial signals.
Publisher
Rockefeller University Press
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献