Affiliation:
1. Department of Pharmacology
2. Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
Abstract
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast–myoblast fusion, but further growth involves myoblast–myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast–myotube fusion. Mannose receptor (MR)–null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.
Publisher
Rockefeller University Press
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献