Replacement of the phospholipid-anchor in the contact site A glycoprotein of D. discoideum by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface

Author:

Barth A1,Müller-Taubenberger A1,Taranto P1,Gerisch G1

Affiliation:

1. Max-Planck-Institut für Biochemie, Martinsried, Germany.

Abstract

The contact site A (csA) glycoprotein of Dictyostelium discoideum, a cell adhesion molecule expressed in aggregating cells, is inserted into the plasma membrane by a ceramide-based phospholipid (PL) anchor. A carboxyterminal sequence of 25 amino acids of the primary csA translation product proved to contain the signal required for PL modification. CsA is known to be responsible for rapid, EDTA-resistant cohesion of cells in agitated suspensions. To investigate the role of the PL modification of this protein, the anchor was replaced by the transmembrane region and short cytoplasmic tail of another plasma membrane protein of D. discoideum. In cells transformed with appropriate vectors, PL-anchored or transmembrane csA was expressed under the control of an actin promoter during growth and development. The transmembrane form enabled the cells to agglutinate in the presence of shear forces, similar to the PL-anchored wild-type form. However, the transmembrane form was much more rapidly internalized and degraded. In comparison to other cell-surface glycoproteins of D. discoideum the internalization rate of the PL-anchored csA was extremely slow, most likely because of its exclusion from the clathrin-mediated pathway of pinocytosis. Thus, our results indicate that the phospholipid modification is not essential for the csA-mediated fast type of cell adhesion but guarantees long persistence of the protein on the cell surface.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3