Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (alpha 4 beta 1)

Author:

Osborn L1,Vassallo C1,Browning BG1,Tizard R1,Haskard DO1,Benjamin CD1,Dougas I1,Kirchhausen T1

Affiliation:

1. Biogen, Inc., Cambridge, Massachusetts 02142.

Abstract

Interaction of the vascular cell adhesion molecule (VCAM-1) with its counter-receptor very late antigen-4 (VLA-4) (integrin alpha 4 beta 1) is important for a number of developmental pathways and inflammatory functions. We are investigating the molecular mechanism of this binding, in the interest of developing new anti-inflammatory drugs that block it. In a previous report, we showed that the predominant form of VCAM-1 on stimulated endothelial cells, seven-domain VCAM (VCAM-7D), is a functionally bivalent molecule. One binding site requires the first and the other requires the homologous immunoglobulin-like domain. Rotary shadowing and electron microscopy of recombinant soluble VCAM-7D molecules suggests that the seven Ig-like domains are extended in a slightly bent linear array, rather than compactly folded together. We have systematically mutagenized the first domain of VCAM-6D (a monovalent, alternately spliced version mission domain 4) by replacing 3-4 amino acids of the VCAM sequence with corresponding portions of the related ICAM-1 molecule. Specific amino acids, important for binding VLA-4 include aspartate 40 (D40), which corresponds to the acidic ICAM-1 residue glutamate 34 (E34) previously reported to be essential for binding of ICAM-1 to its integrin counter-receptor LFA-1. A small region of VCAM including D40, QIDS, can be replaced by the similar ICAM-1 sequence, GIET, without affecting function or epitopes, indicating that this region is part of a general integrin-binding structure rather than a determinant of binding specificity for a particular integrin. The VCAM-1 sequence G65NEH also appears to be involved in binding VLA-4.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3