Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix.

Author:

Condeelis J,Vahey M,Carboni J M,DeMey J,Ogihara S

Abstract

The cell cortex of Dictyostelium amebae contains an actin-rich cytoplasmic matrix. Changes in geometry of this matrix are believed to regulate protrusive activity and motility of the cell cortex. Two actin-binding proteins (120,000 and 95,000 daltons [120K and 95K]) are present in the cell cortex, and their properties, many of which are described here for the first time, suggest that they regulate growth and organization of cortical microfilaments. The 120K protein is a flexible dimer 35 nm in length with a native molecular mass of 241,000. It nucleates the polymerization of actin and crosslinks the filaments to form branched networks like those seen in situ in the cell cortex. The production of a branched network of short crosslinked filaments results in a lattice that would theoretically generate the maximum rigidity with minimum amount of polymer. This sort of lattice would be very useful as a space-filling cytoskeleton capable of resisting deformation. The 120K protein inhibits the actin-stimulated Mg ATPase of myosin. Competition for actin binding between 120K and myosin, the impenetrability of the 120K-actin network to myosin, and the rigidity of actin filaments that are crosslinked by 120K could all contribute to the decrease in the actin-stimulated Mg ATPase of myosin. The properties of 120K are consistent with a role for this protein in regulating the site of actin filament growth and gelation in the cell but not the assembly of actin-containing structures that would participate in force generation by a sliding-filament mechanism involving myosin. The 95K protein is a rigid dimer 40 nm in length with a native molecular mass of between 190,000 and 210,000. Its physical and antigenic properties lead us to conclude that the 95K protein is Dictyostelium alpha-actinin. Unlike 120K, it crosslinks actin filaments into lateral arrays and increases the actin-stimulated Mg ATPase of myosin. Both activities are regulated by Ca2+. The properties of 95K are consistent with a role in organizing actin filaments in the cell into lateral arrays that are capable of efficient interaction with myosin to produce force for cell motility.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3