Diffusion in the aqueous compartment.

Author:

Mastro A M,Keith A D

Abstract

Measurements of diffusion of molecules in cells can provide information about cytoplasmic viscosity and structure. In a series of studies electron-spin resonance was used to measure the diffusion of a small spin label in the aqueous cytoplasm of mammalian cells. Translational and rotational motion were determined from the same spectra. Based on measurements made in model systems, it was hypothesized that calculations of the apparent viscosity of the cytoplasm from both rotational and translational motion would distinguish between the effects of viscosity and structure on diffusion. The diffusion constant measured in several cell lines averaged 3.3 X 10(-6) cm2/s. It was greater in growing cells and in cells treated with cytochalasin B than in quiescent cells. The viscosity of the cytoplasm calculated from the translational diffusion constant or the rotational correlation time was 2.0-3.0 centipoise, about two to three times that of the spin label in water. Therefore, over the dimensions measured by the technique, 50-100 A, solvent viscosity appears to be the major determinant of particle movement in cells under physiologic conditions. However, when cells were subjected to hypertonic conditions, the translational motion of the spin label decreased threefold, whereas the rotational motion changed by less than 20%. These data suggest that the decrease in cell volume under hypertonic conditions is accompanied by an increase in cytoplasmic barriers and a decrease in the space between existing cytoplasmic components without a significant increase in viscosity in the aqueous phase. In addition, a comparison of reported diffusion values of a variety of molecules in water and in cells indicates that cytoplasmic structure plays an important role in the diffusion of proteins such as bovine serum albumin.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction;Frontiers in Cell and Developmental Biology;2022-02-09

2. Enzyme Catalysis in Psychrophiles;Psychrophiles: From Biodiversity to Biotechnology;2017

3. Quantitative Fluorescence Microscopy Measures Vascular Pore Size in Primary and Metastatic Brain Tumors;Cancer Research;2016-11-04

4. Organisation;Das Phänomen Leben;2015-12-12

5. Cold-Adapted Enzymes;Physiology and Biochemistry of Extremophiles;2014-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3