Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies.

Author:

Vitale A,Chrispeels M J

Abstract

Cotyledons of the common bean (Phaseolus vulgaris L.) synthesize large amounts of the lectin phytohemagglutinin (PHA) during seed development. The polypeptides of PHA are synthesized by endoplasmic reticulum-bound polysomes and co-translationally glycosylated, pass through the Golgi complex, and accumulate in protein bodies, which constitute the lysosomal compartment in these cells. Some of the high-mannose sidechains of PHA are modified in the Golgi complex, and in mature PHA they contain N-acetylglucosamine, mannose, fucose, and xylose in the molar ratios 2, 3.8, 0.6, and 0.5. The results reported here show that the Golgi complex is also the site of additional N-acetylglucosamine incorporation into the modified sidechains. When developing cotyledons are labeled with [3H]glucosamine and glycopeptides of PHA present in the Golgi complex isolated, the radioactivity can be released as [3H]N-acetylglucosamine by digestion of the glycopeptides with beta-N-acetylglucosaminidase, indicating that the residues are in a terminal position. Arrival of PHA in the protein bodies is followed by the slow removal of these terminal N-acetylglucosamine residues, resulting in a decrease in the Mr of the modified sidechains. The biosynthetic intermediates of the glycoproteins destined for the lysosomal compartments of animal cells contain high-mannose sidechains modified by phosphate groups covered by N-acetylglucosamine that is labile to mild acid treatment. When cotyledons are labeled with [32P]orthophosphate, there is no radioactivity in PHA obtained from any of the subcellular fractions. There is also no release of radioactivity when [3H]glucosamine-labeled glycopeptides obtained from PHA in the Golgi complex are subjected to mild acid hydrolysis. These results indicate that the sorting-signals and posttranslational processing steps for proteins that are transported to the lysosomal compartment are different in plant cells and animal cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3