Identification and molecular characterization of E-MAP-115, a novel microtubule-associated protein predominantly expressed in epithelial cells.

Author:

Masson D1,Kreis T E1

Affiliation:

1. European Molecular Biology Laboratory, Heidelberg, Germany.

Abstract

A novel microtubule-associated protein (MAP) of M(r) 115,000 has been identified by screening of a HeLa cell cDNA expression library with an anti-serum raised against microtubule-binding proteins from HeLa cells. Monoclonal and affinity-purified polyclonal antibodies were generated for the further characterization of this MAP. It is different from the microtubule-binding proteins of similar molecular weights, characterized so far, by its nucleotide-insensitive binding to microtubules and different sedimentation behavior. Since it is predominantly expressed in cells of epithelial origin (Caco-2, HeLa, MDCK), and rare (human skin, A72) or not detectable (Vero) in fibroblastic cells, we name it E-MAP-115 (epithelial MAP of 115 kD). In HeLa cells, E-MAP-115 is preferentially associated with subdomains or subsets of perinuclear microtubules. In Caco-2 cells, labeling for E-MAP-115 increases when they polarize and form blisters. The molecular characterization of E-MAP-115 reveals that it is a novel protein with no significant homologies to other known proteins. The secondary structure predicted from its sequence indicates two domains connected by a putative hinge region rich in proline and alanine (PAPA region). E-MAP-115 has two highly charged regions with predicted alpha-helical structure, one basic with a pI of 10.9 in the NH2-terminal domain and one neutral with a pI of 7.6 immediately following the PAPA region in the acidic COOH-terminal half of the molecule. A novel microtubule-binding site has been localized to the basic alpha-helical region in the NH2-terminal domain using in vitro microtubule-binding assays and expression of mutant polypeptides in vivo. Overexpression of this domain of E-MAP-115 by transfection of fibroblasts lacking significant levels of this protein with its cDNA renders microtubules stable to nocodazole. We conclude that E-MAP-115 is a microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3