Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor.

Author:

Deckwerth T L1,Johnson E M1

Affiliation:

1. Washington University School of Medicine, Department of Molecular Biology and Pharmacology, St. Louis, Missouri 63110.

Abstract

The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation-induced death occurs by apoptosis and is an example of programmed cell death.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3