A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans.

Author:

Love D C1,Esko J D1,Mosser D M1

Affiliation:

1. Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

Abstract

The intracellular amastigote form of leishmania is responsible for the cell-to-cell spread of leishmania infection in the mammalian host. In this report, we identify a high-affinity, heparin-binding activity on the surface of the amastigote form of leishmania. Amastigotes of Leishmania amazonensis bound approximately 120,000 molecules of heparin per cell, with a Kd of 8.8 x 10(-8) M. This heparin-binding activity mediates the adhesion of amastigotes to mammalian cells via heparan sulfate proteoglycans, which are expressed on the surface of mammalian cells. Amastigotes bound efficiently to a variety of adherent cells which express cell-surface proteoglycans. Unlike wild-type CHO cells, which bound amastigotes avidly, CHO cells with genetic deficiencies in heparan sulfate proteoglycan biosynthesis or cells treated with heparitinase failed to bind amastigotes even at high parasite-input dosages. Cells which express normal levels of undersulfated heparan bound amastigotes nearly as efficiently as did wild-type cells. The adhesion of amastigotes to wild-type nonmyeloid cells was almost completely inhibited by the addition of micromolar amounts of soluble heparin or heparan sulfate but not by the addition of other sulfated polysaccharides.l Binding of amastigotes to macrophages, however, was inhibited by only 60% after pretreatment of amastigotes with heparin, suggesting that macrophages have an additional mechanism for recognizing amastigotes. These results suggest that leishmania amastigotes express a high-affinity, heparin-binding activity on their surface which can interact with heparan sulfate proteoglycans on mammalian cells. This interaction may represent an important first step in the invasion of host cells by amastigotes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3