Intracellular routing of GLcNAc-bearing molecules in thyrocytes: selective recycling through the Golgi apparatus.

Author:

Miquelis R1,Courageot J1,Jacq A1,Blanck O1,Perrin C1,Bastiani P1

Affiliation:

1. Laboratoire de Biochimie, URA 1455, Faculté de Médecine Nord, Marseille, France.

Abstract

Previous experiments led us to speculate that thyrocytes contain a recycling system for GlcNAc-bearing immature thyroglobulin molecules which prevents these molecules from lysosomal degradation (Miquelis, R., C. Alquier, and M. Monsigny. 1987. J. Biol. Chem. 262:15291-15298). To confirm this hypothesis, the fate of GlcNAc-bearing proteins after internalization by thyrocytes was monitored and compared to that of fluid phase markers. Kinetic internalization studies were performed using 125I-GlcNAc-BSA and 131I-Man-BSA. We observed that the apparent intake rate as well as the amount of hydrolyzed GlcNAc-BSA are smaller than the corresponding values for Man-BSA. These differences were reduced by GlcNAc competitors (thyroglobulin and ovomucoid) or a weak base (chloroquine). Part of the internalized GlcNAc-BSA was released into the extracellular milieu at a higher rate and shorter half life (t1/2 = approximately 30 min) than the Man-BSA (t1/2 = approximately 8 h). Subcellular homing was first studied by cell fractionation after internalization using 125I-ovomucoid and 131I-BSA. During Percoll density gradient fractionation, endogenous thyroperoxidase was used to separate subsets of organelles involved in the biosynthetic exocytotic pathway. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation give rise to a shift in the density of organelles containing 3.5 times more ovomucoid than BSA. Discontinuous sucrose gradient showed that: (a) thyroperoxidase was colocalized with galactosyltransferase-contraining organelles in Golgi-rich subfractions; and (b) that at every time studied from 10 to 100 min, the ovomucoid/BSA ratio was higher in these organelles than in other subfractions. Finally we also observed that: (a) ovomucoid sequestered in the Golgi-rich subfraction incorporated [3H]galactose; and (b) that part of internalized ovomucoid was localized on the Golgi stacks as well as elements of the trans-Golgi, as revealed by immunogold labeling on ultrathin cryosections. These data prove that in thyrocytes GlcNAc accessible sugar moieties on soluble internalized molecules are sufficient to trigger their recycling via the Golgi apparatus.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3