Primary structure and domain organization of human alpha and beta adducin.

Author:

Joshi R1,Gilligan D M1,Otto E1,McLaughlin T1,Bennett V1

Affiliation:

1. Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Adducin is a membrane-skeletal protein which is a candidate to promote assembly of a spectrin-actin network in erythrocytes and at sites of cell-cell contact in epithelial tissues. The complete sequence of both subunits of human adducin, alpha (737 amino acids), and beta (726 amino acids) has been deduced by analysis of the cDNAs. The two subunits have strikingly conserved amino acid sequences with 49% identity and 66% similarity, suggesting evolution by gene duplication. Each adducin subunit has three distinct domains: a 39-kD NH2-terminal globular protease-resistant domain, connected by a 9-kD domain to a 33-kD COOH-terminal protease-sensitive tail comprised almost entirely of hydrophilic amino acids. The tail is responsible for the high frictional ratio of adducin noted previously, and was visualized by EM. The head domains of both adducin subunits exhibit a limited sequence similarity with the NH2-terminal actin-binding motif present in members of the spectrin superfamily and actin gelation proteins. The COOH-termini of both subunits contain an identical, highly basic stretch of 22 amino acids with sequence similarity to the MARCKS protein. Predicted sites of phosphorylation by protein kinase C include the COOH-terminus and sites at the junction of the head and tail. Northern blot analysis of mRNA from rat tissues, K562 erythroleukemia cells and reticulocytes has shown that alpha adducin is expressed in all the tissues tested as a single message size of 4 kb. In contrast, beta adducin shows tissue specific variability in size of mRNA and level of expression. A striking divergence between alpha and beta mRNAs was noted in reticulocytes, where alpha adducin mRNA is present in at least 20-fold higher levels than that of beta adducin. The beta subunit thus is a candidate to perform a limiting role in assembly of functional adducin molecules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3