Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2.

Author:

Chan P Y1,Lawrence M B1,Dustin M L1,Ferguson L M1,Golan D E1,Springer T A1

Affiliation:

1. Center for Blood Research, Boston, Massachusetts 02115.

Abstract

We have used an in vitro model system of glass-supported planar membranes to study the effects of lateral mobility of membrane-bound receptors on cell adhesion. Egg phosphatidylcholine (PC) bilayers were reconstituted with two anchorage isoforms of the adhesion molecule lymphocyte function-associated antigen 3 (LFA-3). The diffusion coefficient of glycosyl phosphatidylinositol (GPI)-anchored LFA-3 approached that of phospholipids in the bilayers, whereas the transmembrane (TM)-anchored isoform of LFA-3 was immobile. Both static and laminar flow assays were used to quantify the strength of adherence to the lipid bilayers of the T lymphoma cell line Jurkat that expresses the counter-receptor CD2. Cell adhesion was dependent on LFA-3 density and was more efficient on membranes containing the GPI isoform than the TM isoform. Kinetic measurements demonstrated an influence of contact time on the strength of adhesion to the GPI isoform at lower site densities (25-50 sites/microns2), showing that the mobility of LFA-3 is important in adhesion strengthening. At higher site densities (1,500 sites/microns2) and longer contact times (20 min), Jurkat cell binding to the TM and GPI isoforms of LFA-3 showed equivalent adhesion strengths, although adhesion strength of the GPI isoform developed twofold more rapidly than the TM isoform. Reduction of CD2 mobility on Jurkat cells at 5 degrees C greatly decreased the rate of adhesion strengthening with the TM isoform of LFA-3, resulting in a 30-fold difference between the two LFA-3 isoforms. Our results demonstrate that the ability of a membrane receptor and its membrane-bound counter-receptor to diffuse laterally enhances cell adhesion both by allowing accumulation of ligands in the cell contact area and by increasing the rate of receptor-ligand bond formation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3