Affiliation:
1. Institute of Biochemistry, University of Zurich, Switzerland.
Abstract
Axonin-1 is an axon-associated cell adhesion molecule with dualistic expression, one form being glycophosphatidylinositol-anchored to the axonal membrane, the other secreted from axons in a soluble form. When presented as a substratum for neuronal cultures it strongly promotes neurite outgrowth from chicken embryonic dorsal root ganglia neurons. In this study, the axon-associated cell adhesion molecule G4, which is identical with Ng-CAM and 8D9, and homologous or closely related to L1 of the mouse and NILE of the rat, was investigated with respect to a receptor function for axonin-1. Using fluorescent microspheres with covalently coupled axonin-1 or L1(G4) at their surface we showed that these proteins bind to each other. Within the sensitivity of this microsphere assay, no interaction of axonin-1 with itself could be detected. Axonin-1-coated microspheres also bound to the neurites of cultured dorsal root ganglia neurons. This interaction was exclusively mediated by L1(G4), as indicated by complete binding suppression by monovalent anti-L1(G4) antibodies. The interaction between neuritic L1(G4) and immobilized axonin-1 was found to mediate the promotion of neurite growth on axonin-1, as evidenced by the virtually complete arrest of neurite outgrowth in the presence of anti-L1(G4) antibodies. Convincing evidence has recently been presented that neurite growth on L1(8D9) is mediated by the homophilic binding of neuritic L1(G4) (1989. Neuron. 2: 1597-1603). Thus, both L1(G4)- and axonin-1-expressing axons may serve as "substrate pathways" for the guidance of following axons expressing L1(G4) into their target area. Conceivably, differences in the concentration of axonin-1 and L1(G4), and/or modulatory influences on their specific binding parameters in leading pathways and following axons could represent elements in the control of axonal pathway selection.
Publisher
Rockefeller University Press
Cited by
270 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献