Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells.

Author:

Feldherr C M1,Akin D1

Affiliation:

1. Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville 32610.

Abstract

Mediated transport across the nuclear envelope was investigated in proliferating and growth-arrested (confluent or serum starved) BALB/c 3T3 cells by analyzing the nuclear uptake of nucleoplasmin-coated colloidal gold after injection into the cytoplasm. Compared with proliferating cells the nuclear uptake of large gold particles (110-270 A in diameter, including the protein coat) decreased 5.5-, 33-, and 78-fold, respectively, in 10-, 14-17-, and 21-d-old confluent cultures; however, the relative uptake of small particles (total diameter 50-80 A) did not decrease with increasing age of the cells. This finding suggests that essentially all pores remain functional in confluent populations, but that most pores lose their capacity to transport large particles. By injecting intermediate-sized gold particles, the functional diameters of the transport channels in the downgraded pores were estimated to be approximately to 130 and 110 A, in 14-17- and 21-d-old cultures, respectively. In proliferating cells, the transport channels have a functional diameter of approximately 230 A. The mean diameters of the pores (membrane-to-membrane distance) in proliferating and confluent cells (728 and 712 A, respectively) were significantly different at the 10%, but not the 5%, level. No differences in pore density (pore per unit length of membrane) were detected. Serum-deprived cells (7-8 d in 1% serum or 4 d in 0.5% serum) also showed a significant decrease in the nuclear uptake of large, but not small, gold particles. Thus, the permeability effects are not simply a function of high cell density but appear to be growth related. The possible functional significance of these findings is discussed.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3