In vitro complement binding on cytoplasmic structures in normal human skin: immunoelectronmicroscopic studies.

Author:

Schuler G,Hintner H,Wolff K,Fritsch P,Stingl G

Abstract

We have previously provided evidence that suggests that exposure of cryostat skin sections to normal human serum (NHS) results in the antibody-independent Clq binding to cytoplasmic structures of various cell types, leading to classical complement pathway activation as evidenced by cytoplasmic C3 deposition. In the present study, we have employed immunoelectronmicroscopic methods to clarify the exact nature of cytoplasmic C3 binding structures. Incubation of cryostat skin sections with NHS followed by peroxidase-labeled rabbit anti-human C3 serum (HRP-R/Hu C3) revealed that intracytoplasmic binding of C3 occurred in suprabasal keratinocytes, melanocytes, fibroblasts, smooth muscle cells, endothelial cells, pericytes, Schwann cells, and nerve axons, but not in basal keratinocytes, Langerhans cells, and other cellular constituents of the skin. C3 binding, as revealed by the deposition of HRP reaction product, was exclusively confined to intermediate-sized filaments (ISF), which can therefore be considered to represent the subcellular site for classical complement pathway activation. Under experimental conditions that do not allow classical complement pathway activation, ISF were not decorated. Our observation that ISF of ontogenetically different cell types share the capacity of complement fixation is in accordance with the recent finding that different ISF types, despite their biochemical and antigenic heterogeneity, have common alpha-helical domains and may provide a clue to the mechanism and site of interaction between complement components and ISF.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3