Abstract
The electrical and secretory activities of mouse pituitary tumor cells (AtT-20/D-16v), which contain and release the ACTH/beta-endorphin family of peptides, were studied by means of intracellular recordings and radioimmunoassays. Injection of depolarizing current pulses evoked action potentials in all cells and the majority (82%) displayed spontaneous action potential activity. Action potentials were found to be calcium-dependent. Barium increased membrane resistance, action potential amplitude and duration, and release of ACTH and beta-endorphin immunoactivity. Isoproterenol increased both action potential frequency and hormone secretion. Raising the external calcium concentration increased the frequency and amplitude of the action potentials and stimulated secretion of ACTH and beta-endorphin immunoactivity. Thus, stimulation of secretory activity in AtT-20 cells was closely correlated with increased electrical activity. However, a complete blockade of action potential activity had no effect on basal hormone secretion in these cells. These results suggest that the mechanisms underlying stimulated hormone secretion are different from those responsible for basal secretory activity. It is proposed that the increased influx of calcium due to the increased action potential frequency initiates the stimulated release of hormone from these cells.
Publisher
Rockefeller University Press
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献