Receptors involved in lymphocyte homing: relationship between a carbohydrate-binding receptor and the MEL-14 antigen.

Author:

Yednock T A,Butcher E C,Stoolman L M,Rosen S D

Abstract

Blood-borne lymphocytes extravasate in large numbers within peripheral lymph nodes (PN) and other secondary lymphoid organs. It has been proposed that the initiation of extravasation is based upon a family of cell adhesion molecules (homing receptors) that mediate lymphocyte attachment to specialized high endothelial venules (HEV) within the lymphoid tissues. A putative homing receptor has been identified by the monoclonal antibody, MEL-14, which recognizes an 80-90-kD glycoprotein on the surface of mouse lymphocytes and blocks the attachment of lymphocytes to PN HEV. In a companion study we characterize a carbohydrate-binding receptor on the surface of mouse lymphocytes that also appears to be involved in the interaction of lymphocytes with PN HEV. This receptor selectively binds to fluorescent beads derivatized with PPME, a polysaccharide rich in mannose-6-phosphate. In this report we examine the relationship between this carbohydrate-binding receptor and the putative homing receptor identified by the MEL-14 antibody. We found that: MEL-14 completely and selectively blocks the activity of the carbohydrate-binding receptor on mouse lymphocytes; the ability of six lymphoma cell lines to bind PPME beads correlates with cell-surface expression of the MEL-14 antigen, as well as PN HEV-binding activity; selection of lymphoma cell line variants for PPME-bead binding by fluorescence-activated cell sorting (FACS) produces highly correlated (r = 0.974, P less than 0.001) and selective changes in MEL-14 antigen expression. These results show that the carbohydrate-binding receptor on lymphocytes and the MEL-14 antigen, which have been independently implicated as receptors involved in PN-specific HEV attachment, are very closely related, if not identical, molecules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3