The posttranslational processing of sucrase-isomaltase in HT-29 cells is a function of their state of enterocytic differentiation.

Author:

Trugnan G,Rousset M,Chantret I,Barbat A,Zweibaum A

Abstract

The biosynthesis of sucrase-isomaltase was compared in enterocyte-like differentiated (i.e., grown in the absence of glucose) and undifferentiated (i.e., grown in the presence of glucose) HT-29 cells. Unlike differentiated cells, in which the enzyme is easily detectable and active, undifferentiated cells display almost no enzyme activity and the protein cannot be detected by means of cell surface immunofluorescence or immunodetection in membrane-enriched fractions or cell homogenates. Pulse experiments with L-[35S]-methionine show that the enzyme is, however, synthesized in these undifferentiated cells. As compared with the corresponding molecular forms in differentiated cells, the high-mannose form of the enzyme in undifferentiated cells is similarly synthesized and has the same apparent Mr. However, its complex form is less labeled and has a lower apparent Mr. Pulse-chase experiments with L-[35S]methionine show that, although the enzyme is synthesized to the same extent in both situations, the high-mannose and complex forms are rapidly degraded in undifferentiated cells, with an apparent half-life of 6 h, in contrast to differentiated cells in which the enzyme is stable for at least 48 h. A comparison of the processing of the enzyme in both situations shows that the conversion of the high-mannose to the complex form is markedly decreased in undifferentiated cells. These results indicate that the absence of sucrase-isomaltase expression in undifferentiated cells is not the consequence of an absence of biosynthesis but rather the result of both an impaired glycosylation and a rapid degradation of the enzyme.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3