ULTRASTRUCTURAL STUDIES OF BEEF HEART MITOCHONDRIA

Author:

Weber Nicholas E.1

Affiliation:

1. From the Department of Biochemistry, Indiana University-Purdue University, Indianapolis, Indiana 46202.

Abstract

The relationships between membranes and intramembrane compartments of isolated heart mitochondria are inadequately defined to express the induced morphological changes associated with the structural organization. The inner membrane and matrix are the major structural entities which undergo transformation upon alteration of metabolism or incubation conditions. To better express these morphological changes within a mitochondrion, two inner membranes plus enclosed matrix are defined as an inmerix (plural inmerices). Three general morphological forms of mitochondria can be distinguished by the size and shape of inmerices. These are distended, condensed, and coalesced inmerixal configurations. Hypotonic conditions and Pi in isotonic sucrose generate distended configurations. This Pi distention is apparently dependent on utilization of energy. It does not occur under anaerobic conditions. Oxidizable substrates generate condensed configurations. ADP and dADP generate coalesced configurations and stop formation of condensed and distended inmerixal configurations in the absence of inhibitors. ADP coalescence is apparently not dependent on an energy input. It occurs under aerobic and anaerobic conditions, and in isotonic and hypotonic media. Atractyloside completely inhibits the effects of ADP on inmerixal membranes whereas oligomycin does not. Distention by Pi is unaffected by the two inhibitors. Distended inmerices, without added Pi (12 mM and 62 mM sucrose), are coalesced by ADP. These studies indicate that coalescence of inmerixal membranes probably reflects the consequences of specific stoichiometric binding or translocation of adenine nucleotides.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3