Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract.

Author:

Roth K A1,Hertz J M1,Gordon J I1

Affiliation:

1. Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

The gastrointestinal tract is lined with a monolayer of cells that undergo perpetual and rapid renewal. Four principal, terminally differentiated cell types populate the monolayer, enterocytes, goblet cells, Paneth cells, and enteroendocrine cells. This epithelium exhibits complex patterns of regional differentiation, both from crypt-to-villus and from duodenum-to-colon. The "liver" fatty acid binding protein (L-FABP) gene represents a useful model for analyzing the molecular basis for intestinal epithelial differentiation since it exhibits cell-specific, region-specific, as well as developmental stage specific expression. We have previously linked portions of the 5' nontranscribed domain of the rat L-FABP gene to the human growth hormone (hGH) gene and analyzed expression of the fusion gene in adult transgenic mice. High levels of hGH expression were noted in enterocytes as well as cells that histologically resembled enteroendocrine cells. In the present study, we have used immunocytochemical techniques to map the distribution of enteroendocrine cells in the normal adult mouse gut and to characterize those that synthesize L-FABP. In addition, L-FABP/hGH fusion genes were used to identify subsets of enteroendocrine cells based on their ability to support hGH synthesis in several different pedigrees of transgenic mice. The results reveal remarkable differences in transgene expression between, and within, enteroendocrine cell populations previously classified only on the basis of their neuroendocrine products. In some cases, these differences are related to the position occupied by cells along the duodenal-to-colonic and crypt-to-villus axes of the gut. Thus, transgenes appear to be sensitive tools for examining the cellular and regional differentiation of this class of intestinal epithelial cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3