Characterization of the collagen in the hexagonal lattice of Descemet's membrane: its relation to type VIII collagen.

Author:

Sawada H1,Konomi H1,Hirosawa K1

Affiliation:

1. Department of Fine Morphology, University of Tokyo, Japan.

Abstract

To investigate the nature of the hexagonal lattice structure in Descemet's membrane, monoclonal antibodies were raised against a homogenate of bovine Descemet's membranes. They were screened by immunofluorescence microscopy to obtain antibodies that label Descement's membrane. Some monoclonal antibodies labeled both Descemet's membrane and fine filaments within the stroma. In electron microscopy, with immunogold labeling on a critical point dried specimen, the antibodies labeled the hexagonal lattices and long-spacing structures produced by the bovine corneal endothelial cells in culture; 6A2 antibodies labeled the nodes of the lattice and 9H3 antibodies labeled the sides of the lattice. These antibodies also labeled the hexagonal lattice of Descemet's membrane in situ in ultrathin frozen sectioning. In immunofluorescence, these antibodies stained the sclera, choroid, and optic nerve sheath and its septum. They also labeled the dura mater of the spinal cord, and the perichondrium of the tracheal cartilage. In immunoblotting, the antibodies recognized 64-kD collagenous peptides both in tissue culture and in Descemet's membrane in vivo. They also recognized 50-kD pepsin-resistant fragments from Descemet's membranes that are related to type VIII collagen. However, they did not react either in immunoblotting or in immunoprecipitation with medium of subconfluent cultures from which type VIII collagen had been obtained. The results are discussed with reference to the nature of type VIII collagen, which is currently under dispute. This lattice collagen may be a member of a novel class of long-spacing fibrils.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collagen VIII in vascular diseases;Matrix Biology;2024-11

2. Comparative study of the reptilian cornea's microstructure;Beni-Suef University Journal of Basic and Applied Sciences;2024-05-08

3. Collagen: A Promising Molecule in Biomedical Applications;Journal of Biomimetics, Biomaterials and Biomedical Engineering;2023-05-31

4. In Vitro Profiling of the Extracellular Matrix and Integrins Expressed by Human Corneal Endothelial Cells Cultured on Silk Fibroin-Based Matrices;ACS Biomaterials Science & Engineering;2023-04-06

5. The soil and the seed: The relationship between Descemet's membrane and the corneal endothelium;Experimental Eye Research;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3