Heterogeneity of mRNA and protein products arising from the protein 4.1 gene in erythroid and nonerythroid tissues.

Author:

Tang T K1,Qin Z1,Leto T1,Marchesi V T1,Benz E J1

Affiliation:

1. Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06510.

Abstract

Immunologically cross-reactive isoforms of the cytoskeletal element protein 4.1 have been identified in many tissues in which they exhibit heterogeneity of molecular weight, abundance, and intracellular localization. To examine the basis for isoform production in erythroid and nonerythroid tissues, we have compared the structure and expression of cDNAs isolated from human erythroid and nonerythroid sources. We have encountered cDNAs representing many distinct mRNA sequences. These exhibit complete nucleotide sequence homology along most of their lengths. Differences were confined to five sequence blocks designated Motifs I-V, which were present or absent in each mRNA moiety. Motif I was expressed only in erythroid cells; it encodes 21 amino acids in a well-characterized spectrin/actin binding domain. Motif II, located near the COOH terminus of the 80-kD "erythroid" protein 4.1 molecule is present in the vast majority of transcripts from both erythroid and nonerythroid cells. Motifs IV and V alter the 5' untranslated region: simultaneous insertion of Motif IV and deletion of Motif V in the untranslated region inserts a new initiator methionine and establishes a contiguous open reading frame encoding a novel 135-kD protein 4.1 molecule. By immunochemical analysis we have identified the longer isoform in cells. Our results are most consistent with tissue-specific alternative mRNA splicing of transcripts of the protein 4.1 gene to yield numerous isoforms. These isoforms exhibit tissue specificity and alter strategic portions of the molecule. Moreover, we describe a novel high molecular weight form of protein 4.1 that arises by splicing events which allow translation at an upstream site.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3