A cadherin-like protein in eggs and cleaving embryos of Xenopus laevis is expressed in oocytes in response to progesterone.

Author:

Choi Y S1,Sehgal R1,McCrea P1,Gumbiner B1

Affiliation:

1. Department of Pharmacology, University of California, San Francisco 94143.

Abstract

A new cadherin-like protein (CLP) was identified in oocytes, eggs, and cleavage stage embryos of Xenopus laevis. As a probe for detecting new cadherin proteins, an antiserum was raised to a 17 amino acid peptide derived from a highly conserved region in the cytoplasmic domain of all cadherins which have been sequenced to date. This antipeptide antibody recognized Xenopus E-cadherin and a polypeptide in Xenopus brain extracts similar to N-cadherin, which were independently identified by specific mAbs. In extracts of eggs and midblastula stage embryos the antipeptide antibody recognized specifically a 120-kD glycoprotein that migrated faster on SDS gels than the 140-kD E- and N-cadherin polypeptides. This 120-kD polypeptide was not recognized by the mAbs specific to E- and N-cadherin. In fact, E- and N-cadherin were not detectable in eggs or midblastula stage embryos. The possible relationship of CLP to P-cadherin, which has been identified in mouse tissues, has not yet been determined. CLP was synthesized by large, late stage oocytes. When oocytes were induced to mature in vitro with progesterone it accumulated to the same level found in normally laid eggs. It did not accumulate further to any significant extent during the early cleavage stages. CLP was detected on the surface of stage 8 blastomeres by cell surface biotinylation, but only after the tight junctions of the blastula epithelium were opened by removal of Ca2+. We conclude that CLP is a maternally encoded protein that is the major, if not only, cadherin-related protein present in the earliest stages of Xenopus development, and we propose that it may play a role in the Ca2(+)-dependent adhesion and junction formation between cleavage stage blastomeres.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3