Membrane channel formation by the lymphocyte pore-forming protein: comparison between susceptible and resistant target cells.

Author:

Persechini P M1,Young J D1,Almers W1

Affiliation:

1. Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Abstract

The assembly of pores by the pore-forming protein (perforin) of cytolytic T lymphocytes (CTLs) and natural killer cells on the membranes of different cell lines was studied. Using the patch clamp technique in the whole cell configuration, we measured the conductance increase induced by perforin in susceptible cell lines as well as in resistant CTL lines (CTLLs). The results showed that although the amplitudes of the first observed conductance steps produced in both cell types were comparable, CTLLs required at least 10-fold higher doses of perforin to form membrane pores. Outside-out patches excised from CTLL-R8, on the other hand, appeared to be more susceptible to channel formation by perforin than intact cells, as lower doses were able to induce conductance increases. Once channels were induced in CTL membranes, however, their conductances (greater than 1 nS) were indistinguishable from the ones obtained in susceptible cell lines. Fluorescence measurements with quin-2 showed that perforin induced rapid increases in the intracellular Ca2+ concentration in susceptible EL4 cells. In marked contrast, a perforin dose 60-120-fold higher than the minimal dose required to elicit Ca2+ changes in EL4 cells was not able to induce any measurable Ca2+ increase in CTLL-R8. The data suggest that the resistance of CTLs to lysis mediated by their own mediator perforin is at least in part due to their ability to avoid pore formation by this protein. The mechanism underlying this phenomenon is not yet understood, but the observation that outside-out patches excised from CTLL-R8 are more susceptible to channel formation by perforin than intact cells raises the possibility that an intracellular mechanism may be involved.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3