Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.

Author:

Nixon R A1,Fischer I1,Lewis S E1

Affiliation:

1. Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.

Abstract

Microtubule-associated proteins (MAPs) in neurons establish functional associations with microtubules, sometimes at considerable distances from their site of synthesis. In this study we identified MAP 1A in mouse retinal ganglion cells and characterized for the first time its in vivo dynamics in relation to axonally transported tubulin. A soluble 340-kD polypeptide was strongly radiolabeled in ganglion cells after intravitreal injection of [35S]methionine or [3H]proline. This polypeptide was identified as MAP 1A on the basis of its co-migration on SDS gels with MAP 1A from brain microtubules; its co-assembly with microtubules in the presence of taxol or during cycles of assembly-disassembly; and its cross-reaction with well-characterized antibodies against MAP 1A in immunoblotting and immunoprecipitation assays. Glial cells of the optic nerve synthesized considerably less MAP 1A than neurons. The axoplasmic transport of MAP 1A differed from that of tubulin. Using two separate methods, we observed that MAP 1A advanced along optic axons at a rate of 1.0-1.2 mm/d, a rate typical of the Group IV (SCb) phase of transport, while tubulin moved 0.1-0.2 mm/d, a group V (SCa) transport rate. At least 13% of the newly synthesized MAP 1A entering optic axons was incorporated uniformly along axons into stationary axonal structures. The half-residence time of stationary MAP 1A in axons (55-60 d) was 4.6 times longer than that of MAP 1A moving in Group IV, indicating that at least 44% of the total MAP 1A in axons is stationary. These results demonstrate that cytoskeletal proteins that become functionally associated with each other in axons may be delivered to these sites at different transport rates. Stable associations between axonal constituents moving at different velocities could develop when these elements leave the transport vector and incorporate into the stationary cytoskeleton.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3