Author:
Franke W W,Schmid E,Freudenstein C,Appelhans B,Osborn M,Weber K,Keenan T W
Abstract
Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate-sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged--and might function--in a manner similar to the desmin filaments in smooth muscle cells.
Publisher
Rockefeller University Press
Cited by
298 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献