SWELLING OF FISH MITOCHONDRIA

Author:

Richardson Thomas1,Tappel A. L.1

Affiliation:

1. From the Department of Food Science and Technology, University of California, and the Bureau of Commercial Fisheries, Davis, California.

Abstract

The physical properties of fish liver and rat liver mitochondria were compared as a function of temperature and osmotic pressure. The data indicate that fish mitochondria are more flexible and swell at a more rapid rate over a 0 to 30°C temperature range, whereas the rates of swelling at 30 to 40°C are comparable. The swelling rates of both fish and rat mitochondria vary with temperature and approximate the Arrhenius relationship. Apparent energies of activation for swelling averaged 26.5 kcal and 12.9 kcal for rat and fish, respectively. Fish mitochondria were less stable than rat mitochondria to osmotic variation, and the disparity in initial swelling rates became increasingly greater with lower osmotic pressure. The hypotonic swelling of both fish and rat mitochondria was readily reversed osmotically; however, there was a very rapid decay of reversal in fish mitochondria and only a very slow decay in the case of rat. All the data indicate that under comparable conditions the fish mitochondrial membranes are more flexible and presumably more permeable and labile than rat mitochondrial membranes. The findings are discussed in relation to the general metabolic implications and the possible contributions of the membrane constituents to membrane behavior.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss);Aquatic Toxicology;2015-01

2. Nutraceuticals;Handbook of Nutraceuticals and Functional Foods;2000-11-10

3. Fish mitochondria;Analytical Techniques;1994

4. Cold Adaptation in Ectotherms: Regulation of Membrane Function and Cellular Metabolism;Advances in Comparative and Environmental Physiology;1989

5. THE MELANO-MACROPHAGE CENTRES OF FISH: A REVIEW;Fish Immunology;1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3