Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum.

Author:

Marquardt T1,Helenius A1

Affiliation:

1. Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.

Abstract

As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3