FLUID TRANSPORT IN THE RABBIT GALLBLADDER

Author:

Kaye Gordon I.1,Wheeler Henry O.1,Whitlock Robert T.1,Lane Nathan1

Affiliation:

1. From the F. Higginson Cabot Laboratory of Electron Microscopy of the Division of Surgical Pathology, Departments of Surgery and Pathology; and the Department of Medicine, College of Physicians and Surgeons of Columbia University, New York

Abstract

The fine structure of the rabbit gallbladder has been studied in specimens whose functional state was undetermined, which were fixed either in situ or directly after removal from the animal; in specimens whose rate of fluid absorption was determined, either in vivo or in vitro, immediately prior to fixation; and in specimens from bladders whose absorptive function was experimentally altered in vitro. Considerable variation was found in the width of the epithelial intercellular spaces in the bladders whose functional state was undefined. In bladders known to be transporting fluid, either in vivo or in vitro, the intercellular spaces were always distended, as were the subepithelial capillaries. This distension was greatest in bladders which had been functioning in vitro. When either Na+ or Cl- was omitted from the bathing media, there was no fluid transport across the wall of the gallbladder studied in vitro. The epithelial intercellular spaces of biopsies taken from several bladders under these conditions were of approximately 200 A width except for minor distension at the crests of mucosal folds. The addition of the missing ion rapidly led to the reestablishment of fluid transport and the distension of the intercellular spaces throughout most of the epithelium of these bladders. Studies of sodium localization (by fixation with a pyroantimonate-OsO4 mixture) showed high concentrations of this ion in the distended intercellular spaces. Histochemical studies of ATPase activity showed that this enzyme was localized along the lateral plasma membrane of the epithelial cells. The analogy is drawn between the structure of the gallbladder mucosa and a serial membrane model proposed by Curran to account for coupled solute-solvent transport across epithelia. It is concluded that the intercellular compartment fulfills the conditions for the middle compartment of the Curran model and that active transport of solute across the lateral plasma membrane into the intercellular space may be responsible for fluid absorption by the gall bladder.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 291 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3