Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas.

Author:

Taillon B E1,Adler S A1,Suhan J P1,Jarvik J W1

Affiliation:

1. Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.

Abstract

Centrin, a 20-kD phosphoprotein with four calcium-binding EF-hands, is present in the centrosome/basal body apparatus of the green alga Chlamydomonas reinhardtii in three distinct locations: the nucleus-basal body connectors, the distal striated fibers, and the flagellar transition regions. In each location, centrin is found in fibrous structures that display calcium-mediated contraction. The mutant vfl2 has structural defects at all of these locations and is defective for basal body localization and/or segregation. We show that the vfl2 mutation is a G-to-A transition in the centrin structural gene which converts a glutamic acid to a lysine at position 101, the first amino acid of the E-helix of the protein's third EF-hand. This proves that centrin is required to construct the nucleus-basal body connectors, the distal striated fibers, and the flagellar transition regions, and it demonstrates the importance of amino acid 101 to normal centrin function. Based on immunofluorescence analysis using anti-centrin antibodies, it appears that vfl2 centrin is capable of binding to the basal body but is incapable of polymerizing into filamentous structures. 19 phenotypic revertants of vfl2 were isolated, and 10 of them, each of which had undergone further mutation at codon 101, were examined in detail. At the DNA level, 1 of the 10 was wild type, and the other 9 were pseudorevertants encoding centrins with the amino acids asparagine, threonine, methionine, or isoleucine at position 101. No ultrastructure defects were apparent in the revertants with asparagine or threonine at position 101, but in those with methionine or isoleucine at position 101, the distal striated fibers were found to be incomplete, indicating that different amino acid substitutions at position 101 can differentially affect the assembly of the three distinct centrin-containing fibrous structures associated with the Chlamydomonas centrosome.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3