Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation

Author:

Webster Micah T.12,McCaffery J. Michael2,Cohen-Fix Orna1

Affiliation:

1. The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892

2. National Institutes of Health/Johns Hopkins University Graduate Partnership Program, and The Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218

Abstract

The parameters that control nuclear size and shape are poorly understood. In yeast, unregulated membrane proliferation, caused by deletion of the phospholipid biosynthesis inhibitor SPO7, leads to a single nuclear envelope “flare” that protrudes into the cytoplasm. This flare is always associated with the asymmetrically localized nucleolus, which suggests that the site of membrane expansion is spatially confined by an unknown mechanism. Here we show that in spo7Δ cells, mutations in vesicle-trafficking genes lead to multiple flares around the entire nucleus. These mutations also alter the distribution of small nucleolar RNA–associated nucleolar proteins independently of their effect on nuclear shape. Both single- and multi-flared nuclei have increased nuclear envelope surface area, yet they maintain the same nuclear/cell volume ratio as wild-type cells. These data suggest that, upon membrane expansion, the spatial confinement of the single nuclear flare is dependent on vesicle trafficking. Moreover, flares may facilitate maintenance of a constant nuclear/cell volume ratio in the face of altered membrane proliferation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3