Sam68 regulates EMT through alternative splicing–activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene

Author:

Valacca Cristina1,Bonomi Serena1,Buratti Emanuele2,Pedrotti Simona34,Baralle Francisco Ernesto2,Sette Claudio34,Ghigna Claudia1,Biamonti Giuseppe1

Affiliation:

1. Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy

2. International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy

3. Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy

4. Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy

Abstract

Epithelial-to-mesenchymal transition (EMT) and its reversal (MET) are crucial cell plasticity programs that act during development and tumor metastasis. We have previously shown that the splicing factor and proto-oncogene SF2/ASF impacts EMT/MET through production of a constitutively active splice variant of the Ron proto-oncogene. Using an in vitro model, we now show that SF2/ASF is also regulated during EMT/MET by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD). Overexpression and small interfering RNA experiments implicate the splicing regulator Sam68 in AS-NMD of SF2/ASF transcripts and in the choice between EMT/MET programs. Moreover, Sam68 modulation of SF2/ASF splicing appears to be controlled by epithelial cell–derived soluble factors that act through the ERK1/2 signaling pathway to regulate Sam68 phosphorylation. Collectively, our results reveal a hierarchy of splicing factors that integrate splicing decisions into EMT/MET programs in response to extracellular stimuli.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3