ENERGY-LINKED ULTRASTRUCTURAL TRANSFORMATIONS IN ISOLATED LIVER MITOCHONDRIA AND MITOPLASTS

Author:

Hackenbrock Charles R.1

Affiliation:

1. From the Department of Cell Biology, The University of Texas Southwestern Medical School. Dallas, Texas 75235

Abstract

An investigation was carried out in which microsamples of isolated rat liver mitochondria and freshly prepared mitoplasts in defined energy states were freeze-cleaved. Parallel microsamples were fixed with osmium tetroxide and with glutaraldehyde followed by osmium tetroxide as previously used in this laboratory for the preservation of energy-linked mitochondrial configurations. The details of the orthodox configuration of energized mitochondria and the condensed configuration of de-energized mitochondria, as revealed previously by chemical fixation, are confirmed in this report for nonfixed, freeze-cleaved mitochondria. The precise agreement in preservation of configuration obtained by the physical fixation of rapid freezing and by chemical fixation establishes unequivocally that mitochondria undergo energy-linked ultrastructural transformation between the condensed and the orthodox configurations which are thus natural structural states related to the metabolic activity of the mitochondrion. Configurations observed by freeze-cleaving and by chemical fixation reveal that mitoplasts also undergo a specific and dramatic ultrastructural transformation with the induction of oxidative phosphorylation. The transformation appears to be isovolumetric and therefore is thought to be mediated through energized conformational activity in the surface electron-transport membrane of the mitoplast. Passively swollen, spherical, osmotically active mitoplasts could not be fixed rapidly enough by chemical fixatives as normally used without altering the spherical form. In this special case preservation of configurational form required rapid freezing or chemical fixatives of low osmolar concentration.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3