Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes

Author:

Shmelzer Zeev1,Haddad Nurit1,Admon Ester1,Pessach Itai1,Leto Thomas L.2,Eitan-Hazan Zahit1,Hershfinkel Michal3,Levy Rachel1

Affiliation:

1. Infectious Diseases Laboratory, Department of Clinical Biochemistry

2. Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

3. Department of Physiology, Faculty of Health Sciences, Soroka Medical Center and Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

Abstract

Cytosolic phospholipase A2 (cPLA2)–generated arachidonic acid (AA) has been shown to be an essential requirement for the activation of NADPH oxidase, in addition to its being the major enzyme involved in the formation of eicosanoid at the nuclear membranes. The mechanism by which cPLA2 regulates NADPH oxidase activity is not known, particularly since the NADPH oxidase complex is localized in the plasma membranes of stimulated cells. The present study is the first to demonstrate that upon stimulation cPLA2 is transiently recruited to the plasma membranes by a functional NADPH oxidase in neutrophils and in granulocyte-like PLB-985 cells. Coimmunoprecipitation experiments and double labeling immunofluorescence analysis demonstrated the unique colocalization of cPLA2 and the NADPH oxidase in plasma membranes of stimulated cells, in correlation with the kinetic burst of superoxide production. A specific affinity in vitro binding was detected between GST-p47phox or GST-p67phox and cPLA2 in lysates of stimulated cells. The association between these two enzymes provides the molecular basis for AA released by cPLA2 to activate the assembled NADPH oxidase. The ability of cPLA2 to regulate two different functions in the same cells (superoxide generation and eicosanoid production) is achieved by a novel dual subcellular localization of cPLA2 to different targets.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3