Affiliation:
1. Centre de Recherche de Biochimie Macromoléculaire, 34293 Montpellier Cedex, France
Abstract
N-cadherin, a member of the Ca2+-dependent cell–cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin–dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin–mediated signals involved in myogenesis, we investigated whether N-cadherin–dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin–dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin–mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for β-catenin accumulation at cell–cell contact sites. We propose that cell–cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.
Publisher
Rockefeller University Press
Cited by
205 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献