Affiliation:
1. Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
2. University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland
Abstract
Telomeres are specialized protein–DNA structures that protect chromosome ends. In budding yeast, telomeres form clusters at the nuclear periphery. By imaging telomeres in embryos of the metazoan Caenorhabditis elegans, we found that telomeres clustered only in strains that had activated an alternative telomere maintenance pathway (ALT). Moreover, as in yeast, the unclustered telomeres in wild-type embryos were located near the nuclear envelope (NE). This bias for perinuclear localization increased during embryogenesis and persisted in differentiated cells. Telomere position in early embryos required the NE protein SUN-1, the single-strand binding protein POT-1, and the small ubiquitin-like modifier (SUMO) ligase GEI-17. However, in postmitotic larval cells, none of these factors individually were required for telomere anchoring, which suggests that additional mechanisms anchor in late development. Importantly, targeted POT-1 was sufficient to anchor chromatin to the NE in a SUN-1–dependent manner, arguing that its effect at telomeres is direct. This high-resolution description of telomere position within C. elegans extends our understanding of telomere organization in eukaryotes.
Publisher
Rockefeller University Press
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献