M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

Author:

Madsen Daniel H.12,Leonard Daniel1,Masedunskas Andrius1,Moyer Amanda1,Jürgensen Henrik Jessen12,Peters Diane E.13,Amornphimoltham Panomwat1,Selvaraj Arul1,Yamada Susan S.1,Brenner David A.4,Burgdorf Sven5,Engelholm Lars H.2,Behrendt Niels2,Holmbeck Kenn1,Weigert Roberto1,Bugge Thomas H.1

Affiliation:

1. Proteases and Tissue Remodeling Section and Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, and Matrix Metalloproteinase Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892

2. The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, 2100 Copenhagen, Denmark

3. Program of Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111

4. Department of Medicine, University of California, San Diego, La Jolla, CA 92093

5. Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany

Abstract

Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3