Correlation of Physical and Biological Properties of Mouse Mammary Tumor Agent

Author:

Moore Dan H.1,Lasfargues E. Y.1,Murray Margaret R.1,Haagensen Cushman D.1,Pollard E. C.1

Affiliation:

1. From The Rockefeller Institute and The College of Physicians and Surgeons, Columbia University, New York, and the Department of Biophysics, Yale University, New Haven

Abstract

Biophysical procedures have been used to determine the size and structure of the biologically active agent responsible for the transmission, through milk, of mouse mammary adenocarcinoma. Filtration of milk from RIII high-breast-cancer mice through gradocol membranes with decreasing pore sizes indicated that a minimum of activity passed through intermediate pore sizes (100 to 160 mµ). Filtrates through smaller pores were significantly active. Milk treated with small doses of deuteron irradiation produced more tumors than the control, unirradiated milk; larger doses indicated a particle size much less than 100 mµ. Free diffusion experiments indicated that the activity was associated with particles of two different sizes. Altogether the data denoted the presence of a large agent about 100 mµ in diameter and a small agent 20 to 30 mµ in diameter or possibly smaller. Furthermore, the presence in the milk of an inhibitor 40 to 60 mµ is indicated by the results of all three approaches. The complex nature of the milk agent disclosed by the physical measurements agrees with the picture of one of the structures revealed by electron microscopy as well as with seemingly conflicting measurements reported in the literature. The large agent defined by these indirect methods corresponds to the whole particle seen in the electron microscope and the small agent corresponds to its internal core or nucleoid. It is suggested that the nucleoid is essentially a nucleic acid which may, in the absence of the "inhibitor," retain its activity after being stripped of its outer membrane or sac.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Identification and Characterization of the Milk Agent;Novartis Foundation Symposia;2008-05-21

2. Morphology of Oncogenic and Non-Oncogenic Mouse Viruses;Novartis Foundation Symposia;2008-05-21

3. CELL-VIRUS RELATIONSHIPS IN THE LUCKÉ RENAL ADENOCARCINOMA: AN ULTRASTRUCTURE STUDY*;Annals of the New York Academy of Sciences;2006-12-16

4. SPONTANEOUS CANCER IN MICE*;Annals of the New York Academy of Sciences;2006-12-15

5. IONIZING RADIATION AND ITS EFFECTS ON ANIMAL VIRUSES*;Annals of the New York Academy of Sciences;2006-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3