Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts.

Author:

Singer I I

Abstract

We have recently observed a transmembrane association between extracellular fibronectin (FN) fibers and elongated focal patches or fibers of vinculin (VN) in G1-arrested stationary Nil 8 hamster fibroblasts, with double-label immunofluorescence microscopy (Singer and Paradiso, 1981, Cell. 24:481-492). We hypothesized that these FN-VN complexes might correspond to focal contacts, the membrane sites that are probably mainly responsible for attaching cells to their substrata, because vinculin is often localized in focal contacts. However, because fibronectin-vinculin associations may not be restricted to the substrate adhesive surface of the cell, it became necessary to determine whether some or all of the various kinds of FN-VN complexes which we described are in proximity to the substrate. Using interference reflection optics and double-label immunofluorescence microscopy for fibronectin and vinculin, many elongated (up to 38 micrometer) FN-VN associations were found to be strikingly coincident with focal contacts in the perinuclear area of extremely flattened arrested Nil 8 fibroblasts in 0.3% fetal bovine serum (FBS). In addition, the long FN-VN adhesion complexes were precisely aligned with the major phase-dense stress fibers observed at the ventral surfaces of these stationary cells with phase contrast microscopy. Fibronectin was neither associated with vinculin-containing focal contacts of Nil 8 cells cultured in medium with 5% FBS nor with vinculin-negative focal contacts located at the extreme edges of stationary cells arrested in 0.3 FBS. Our time-course experiments suggest that early FN-VN lacking-focal contacts, which form at the cellular margins, develop into mature substrate adhesion complexes containing both fibronectin and vinculin, localized in the major stress fibers at the centers of sessile fibroblasts.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3